CURRICULUM VITAE

PRITI SHARMA, Ph.D, MRSC. C/o Prof. <u>Radek Zbořil</u> Regional Centre of Advanced Technologies and Materials Palacky University, 11,78371, Olomouc, Czech Republic. E-mail: <u>priti.sharma@mail.huji.ac.il</u>, <u>priti.s.ncl@gmail.com</u> <u>Google Scholor Profile</u> <u>https://scholar.google.com/citations?user=TpBeXsYAAAAJ&hl=en</u> **Membership RSC** -MRSC Membership

Member ID: 729415

Career Objective & Approach

Seeking a growth-oriented position to utilize my experience and skills in multidisciplinary applied research and development precisely based - Plasmonic energy storage Material science & Photo-catalysis for H_2 Generation and CO_2 Transformation and organic transformation.

Work Experience

Jul. 2018 - till now

Junior Researcher,

RCPTM Palacký University, Olomouc, Czech Republic.

Supervisor: Prof. Radek Zbořil

Topic of Research:

Patent Targeted Synthesis:

Plasmonic Material (TiN): Exploring TiN heterojunction with potential photocatalyst (C_3N_4 , nonmetal doped C_3N_4 , C_3N_5 , C_3N_7 , N doped graphene) for metal-free plasmonic hot electrons concentration for H₂ generation and CO₂ absorption and conversion.

Single-atom catalysts (SACs): Uniform stable single-atom formulation pseudo single atoms and sub-nanometer synthesis over C_3N_4 nanosheet, g- C_3N_4 , C_3N_5 , C_3N_7 and N-doped graphene. Photocatalysis, nanomaterial.

Single-atom Alloys (SAAs): Bimetallic single atom formulation with a higher % of single atom existence photoactive materials such as TiN, $(C_3N_4, nonmetal doped C_3N_4, C_3N_5, C_3N_7, N doped graphene).$

Patent Targeted Application:

 CO_2 Conversion: Value-added component conversion; ethanol, methanol, methane under photochemical environment. CO_2 Capture: Under pressure free in ionic liquid and amines synthesizing potential ionic solvents for CO₂ capture. Negative Carbon footprints.

Blue H_2 Generation: Photocatalytic H_2 evolution, Hydrogen Storage via Hydrogen Carriers substrates; water splitting – H_2O -methanol system,

	Artificial photosynthesis. Establishment of Carbon capture technology during the process.
	No. of students supervised: 1 Master. 1 Ph.D.
Mar. 2016 - June 2018	Supervisor: Prof. Yoel Sasson
Postdoctoral Fellow, Hebrew University, Jerusalem, Israel.	The topic of Research: H_2 generation via photochemical intensification. Hydrocracking, Catalyst synthesis, biofuel synthesis, Photocatalysis, Photocatalytic hydrogen generation using formate solution, Air, water purification, C-H Activation photochemically, (dye & heavy metal removal).
	No. of students supervised: 1 Master.
Apr. 2015 - February 2016	Supervisor: Dr. A. P. Singh
Research Associate , CSIR-NCL, Pune, India.	<i>The topic of Research:</i> Ligand via click reaction, Heterogeneous catalysis, Asymmetric catalysis, Homo and hetero Catalysis, Organometallic chemistry " click " Reaction modifications.
	No. of students supervised: 2 M.tech, 6 Maters.
Education Profile	
Aug. 2009 – April 2015	 Doctoral research (Ph.D.), CSIR-NCL, Pune, India Title: "Immobilization of metal complexes (Pd, Mn) over mesoporous materials: Synthesis Characterization and application for oxidation, Hydrogenation, and C-C coupling reactions." Supervisor: Dr. A. P. Singh, Chief Scientist, (chairman) CSIR-NCL, Pune.
Strength Project:	CSIR- NCL, Pune on a DST sponsored project. "Asymmetric organic transformations using heterogenized chiral complexes over organo-functionalized solid materials." (GAP 276826) from 23rd June, 2009 to 30th April, 2012.

Published/Invited Cover pages in Published Journals

- ✓ First Author: Published in Small, is among our most downloaded papers. *Carbon Nitride-Based Ruthenium* Single Atom Photocatalyst for CO₂ Reduction to Methanol.
- ✓ Small 2022, 18, 2201712. This article also appears in Hot Topic: *Carbon Dioxide*.
- ✓ Front cover page *Solar RRL*, Volume 5, Issue 7. 2021.
- ✓ Front Cover page ACS Sustainable Chem. Eng. 2020, Volume 8, Issue 6.
- ✓ Cover page Green Chemistry Journal 2018, Issue Dec.
- ✓ Invited Cover page Green Chemistry Journal, 2017, issue19.
- ✓ Cover page in Catalysis Science and Technology Journal 2018, issue 13.

PI Grant awarded

- ✓ Winner of MSCA Fellowship POLONEZ BIS project PLSMNSNGLTM-A no. 2022/47/P/ST4/03412. Project title : "Simple methods for the synthesis of future, unconventional plasmonic materials with mono-atom and bimetallic centers for sustainable H2 production and CO2 reduction".
- ✓ National Post-Doctoral Fellowship (N-PDF) Science & Engineering Research Board (SERB) India 15-Jan-2016.

- ✓ **The project titled** "Immobilization of Iridium organometallics: Homogeneous model compounds and catalytic utility in glycerol conversion to value-added product lactic acid".
- ✓ Applied MSCA-IF three times and scored more than 89%.

Fellowships Awarded

- ✓ Awarded Senior Research Fellowship (UGC) 2011, Govt. of India.
- ✓ Awarded Junior Research Fellowship (JRF) 2008, Govt. of India (Out of 8056 candidates).
- ✓ Awarded GATE 2009 (Percentile: 89.45, All India rank 701) conducted by Indian Institute of Technology, Delhi, Govt. of India. (Out of 574448 candidates).

PI Project Applied.

- ✓ Joint call for bilateral projects with a solution period of 2024-2025 bilateral partner: Germany. PI- Priti Sharma.
- Leverhulme Trust which is a UK- based sponsor on research. -Title Carbon-capture using carbon nitride (g-C3N4) nanomaterials for enhanced algal growth and fuel production.

Potential Reviewer in Well renounced Journals

- ✓ Applied Surface Science
- ✓ Reaction Chemistry & Engineering
- ✓ Scientific Reports
- ✓ Applied Catalysis A: General
- ✓ Green Chemistry
- ✓ ACS Catalysis
- ✓ ACS Applied Nano Material

Patent Targeted Research Area/Interest:

Application precisely based on Green, Carbon footprint-free, environmentally friendly Photocatalysis, Plasmonic photocatalysis, nano-catalysis and catalysis in energy conversion processes. Targeted Synthesis of energy storage future materials precisely plasmonic with C, N, O based energy storage materials.

Blue Hydrogen Generation and Storage

- ✓ Pure Hydrogen carbon-free generation under photochemical reaction conditions- Using Plasmonic, photoactive material heterojunction. (Simultaneously capture CO₂ using ionic liquid and amine solution).
- ✓ In-situ hydrogen generation using IPA, various alcohols, and formats of aqueous solutions.
- ✓ Hydrogen Storage and Hydrogen Carriers Technology Innovation: Hydrogen generation by using formats solutions with photocatalysts or heterogeneous catalysts. Green and safe in-situ hydrogen generation using Mg, Al metals in water medium using photocatalyst.

CO2 capture, storage, and transformation into value-added products

- ✓ Photochemical Organic Transformation: Value-added component conversion; ethanol, methanol, methane under a photochemical environment.
- ✓ *CO*₂ *Capture:* Under pressure free in ionic liquid and amines synthesizing potential solvents for CO₂ capture.
- ✓ Negative Carbon footprints industrial protocol optimization.

Patent Targeted Energy Storage Material Synthesis:

✓ *Metal Free-Plasmonic Material (TiN):* Exploring TiN heterojunction with potential photocatalyst (C_3N_4 , nonmetal doped C_3N_4 , C_3N_5 , C_3N_7) for metal-free plasmonic hot electrons concentration for H₂ generation and CO₂ absorption and conversion.

✓ Detailed research for plasmonic material hetero-junction capability with CN-based material for hydrogen evolution.

Single-atom catalysts (SACs):

- ✓ Highly stable, uniformly distributed single atom formulation, pseudo single atoms, and sub-nanometer synthesis over C₃N₄ nanosheet, g-C₃N₄, C₃N₅, C₃N₇, and N-doped graphene.
- \checkmark Detailed research for single atom stability and over various photoactive support.
- \checkmark Photo catalysis, using energy storage material precisely carbon and Nitrogen based materials.

Single-atom Alloys:

- ✓ Bimetallic single-atom formulation with a higher % of single-atom existence photoactive supports. Various alloys combination Ni-Co, Pt-Ni, Pt-Co, Fe-Zn, Co-Ni, Fe-Pt were synthesized as single-atom alloys for photochemical reactivity.
- ✓ *Phase Transfer Catalysis:* Fundamentals and Industrial Applications.
- ✓ *Metal interaction study:* metal interaction durability, materials agglomeration, Metal nanoparticle, Rusting, Metal oxide formation.
- ✓ Organic-inorganic hybrid interaction, supported metal complex based on green chemistry application.
- ✓ Multiphase Catalytic Process Development. Oxidations, Hydrogenations, Halogenations.

Photochemical Organic Transformation:

- ✓ C-H activation
- \checkmark CO₂ to fuel transformation.
- ✓ Dye degradation and waste, Organic, and plastic degradation.
- ✓ Photochemical in-situ hydrogenation.
- ✓ Air, Water, and Soil purification.

Active Independent - Collaboration National / International

✓ Dr Gareth Griffiths, Principal Investigator, Algal Research, Energy and Bioproducts Research Institute Aston University, Birmingham B4, 7ET, United Kingdom, Mechanical Engineering, Aston University, Birmingham UK.

Collaboration research Topic. Carbon capture using carbon nitride nanomaterials for enhanced algal growth and fuel production.

https://research.aston.ac.uk/en/persons/gareth-griffiths

✓ Dr. Abul Kalam Hossain

Senior Lecturer, College of Engineering and Physical Sciences Mechanical, Biomedical & Design Engineering, Aston Institute of Urban Technology and the Environment (ASTUTE); Aston Institute of Materials Research (AIMR) *Collaboration research Topic. SANP impact over the calorific value of the fuel.* https://orcid.org/0000-0002-8713-8058.

- Dr. Gianvito Vilé Politecnico di Milano, Via Mancinelli, 7, 20131 Milan, Italy. <u>https://www.vile-researchgroup.com/</u> *Collaboration research Topic:* Bimetallic single-atom photochemical application for key material formulation.
- ✓ Dr. Kancharlapalli Srinivasu, Theoretical Chemist. Bhabha Atomic Research Centre: Mumbai, Maharashtra, IN. *Collaboration research Topic*: C₃N₄ based First-principal investigation of electronic structures and interactions. <u>https://scholar.google.co.in/citations?user=Wl1gYhMAAAAJ&hl=en</u>
- ✓ Dr. Dinesh Kanji Patel, Carnegie Mellon University. Pittsburgh, United States.
 Collaboration research Topic: 2D and 3D Printed Material design and application.

https://scholar.google.co.il/citations?user=2KonQvQAAAAJ&hl=en

- ✓ Dr. Vikas Sharma; Research Associate, Mechanical Engineering, Aston University, Birmingham UK. Department of Mechanical, Biomedical Engineering & Design.
 Collaboration research Topic: biodiesel production study using real Engine and calorific values. https://scholar.google.co.in/citations?user=_1pHR6QAAAAJ&hl=en
- ✓ Dr. Sujoy Sarkar; Postdoctoral Research Fellow at Queens College, New York. Collaboration research Topic: material electrochemistry, electrochemical energy conversion, storage systems. https://scholar.google.com/citations?user=K469vcoAAAAJ&hl=en
- ✓ Dr. Baljeet Singh, JSPS-Fellow Kyushu University, Fukuoka, Japan Direct Air Capture/Post-combustion CO₂ Capture/sustainable food/Farmer. <u>https://scholar.google.co.in/citations?hl=en&user=I5UxrpMAAAAJ&view_op=list_works&sortby=pubdate</u>

Technical/Instrumental Skills

Photo reactor;

- ✓ 7 years of handing experience: Photoreactor system handling experience consisting of the following; UV protection cabinet, Thermocontrol, Bandpass filter, spectral radiometer, and various monochromatic lamps.
- ✓ Light sources handling: LED immersion lamp for lamp photoreactor (275, 310, 265, 385, 395, 405 nm wavelength) handling, Nova light TLED 100/365 Basic (immersion lamp 100W, 365nm), Nova light TLED 100/420 Basic (immersion lamp 100W, 420nm), Nova light TLED 100/525 Basic (immersion lamp 100W, 525nm), 150 Watt xenon source of light, 150 Watts medium pressure light source with Hg lamp.
- ✓ Spectral radiometers: wireless measuring to monitor the lamp power, Spectra at peak irradiance, Peak irradiance (UVA, UVB, UVC, VIS), Irradiance dose (UVA, UVB, UVC, VIS), Irradiance profile.
- ✓ Expertise for Plasmonic and Photoactive material photo-reactivity optimization under various light source with bandpass filter.

✓ Other Instruments Expertise

- ✓ Expertise in handling of instruments viz; XRD (Philips), FT-IR (Perkin Elmer), UV-Visible (Perkin Elmer), N₂ adsorption-desorption (Quantachrome) technique, ICP-AES, GC, GC-MS and HPLC, High-Pressure Reactors (Parr Rector), Amar Reactor, Ultrasonic homogenizers.
- ✓ Expertise knowledge of metal interaction by XPS, in-situ EPR, Solid-state NMR, HR-XPS, SEM, Raman, HR-TEM, TGA, DTA & elemental analysis.
- ✓ Analysis of organic reaction products using analytical instruments such as GC (FID, TCD), HPLC & Development of process and Catalyst for the liquid phase organic reactions to get fine and bulk chemicals.

Computational/Software Skills

- ✓ Computational calculation using Gaussian 09 software interaction energies in the transition states.
- ✓ MS Office, SciFinder, Chemdraw, ImageJ, Origin.

Publications

- Interface Engineering of SRu-mC₃N₄ Heterostructures for Enhanced Electrochemical Hydrazine Oxidation Reactions Authors: Ajay Munde, <u>Priti Sharma</u>, Somnath Dhawale, Ravishankar G. Kadam, Subodh Kumar, Hanumant B. Kale, Jan Filip, Radek Zboril, Bhaskar R. Sathe *, Manoj B. Gawande * Catalysts-2000162) (IF: 4.146).
- [2] Intermetallic Copper-based Electride Catalyst with High Activity for C-H Oxidation and Cycloaddition of CO₂ into Epoxides. Ravishankar G. Kadam, Tian-Nan Ye, Dagmar Zaoralová, Miroslav Medveď, <u>Priti Sharma</u>, Yangfan Lu, Giorgio Zoppellaro, Ondrej Tomanec, Michal Otyepka, Manoj B. Gawande, Radek Zboril and Hideo Hosono. Small 2022, 18, 2201712. This article also appears in Hot Topic: Carbon Dioxide. (IF: 15.15).

- Pd doped Carbonitride (Pd-g-C₃N₄): An efficient Photocatalyst for Hydrogenation via Al-H₂O system & efficient Electrocatalyst towards Overall Water Splitting. <u>Priti Sharma*</u> Sujoy Sarkar, Debdyuti Mukherjee, and Yoel Sasson*, Daniel Mandler*. (Green chemistry Accepted, Green Chemistry, 2022, DOI: 10.1039/D2GC00801G). (IF: 11.034).
- [4] Surface-engineeredeered Iridium-based magnetic photocatalyst paving a path towards visible light driven C-H arylation and cyanation reaction. Pooja Rana, Rashmi Gaur, Bhawna Kaushik, Pooja Rana, Sneha Yadav, Priya Yadav, **Priti Sharma**, Manoj B. Gawande, Rakesh K. Sharma. *J. Catal.* 2021, *401*, 297–308. (IF: 7.92).
- [5] An Earth-Abundant Ni-Based Single-Atom Catalyst for Selective Photodegradation of Pollutants. Gianvito Vilé, <u>Priti Sharma</u>, Maarten Nachtegaal, Flavio Tollini, Davide Moscatelli, Anna Sroka-Bartnicka, Ondrej Tomanec, Martin Petr, Jan Filip, Izabela S. Pieta, Radek Zbořil, Manoj B. Gawande. Sol. RRL, 5: 2100176. <u>https://doi.org/10.1002/solr.202100176</u>. published with cover page. (IF: 8.13).
- [6] Carbon Nitride-Based Ruthenium Single Atom Photocatalyst for CO₂ Reduction to Methanol. <u>Priti Sharma</u>, Subodh Kumar, Ondrej Tomanec, Martin Petr, Johnny Zhu Chen, Jeffrey T. Miller, Rajender S. Varma, Manoj B. Gawande, Radek Zbořil. *Small* 2021, 17, 2006478, Invited cover page. (IF: 15.15).
- [7] Facile Combined Experimental & Computational Study: g-C₃N₄@PDMS Assisted Knoevenagel Condensation Reaction under Phase Transfer Conditions. <u>Priti Sharma</u>, Dinesh K Patel, Srinivasu Kancharlapalli, Shlomo Magdassi^{1,*}, Yoel Sasson^{1,*}. Accepted in *ACS Sustainable Chemistry & Engineering 2019*. (IF:9.224)
- [8] Visible light Assisted Hydrogen Generation via Magnesium-Water system Catalyzed by Pd-g-C₃N₄ Photo catalyst. <u>Priti Sharma*</u> and Yoel Sasson. *Green Chem.*, 2019, 21, 261-268, published with cover page. (IF: 11.034).
- [9] Synthesis of heterogeneous Ru(II)-1,2,3-triazole catalyst supported over SBA-15: application to the hydrogen transfer reaction and unusual highly selective 1,4-disubstituted triazole formation *via* multicomponent click reaction. <u>Priti Sharma^a</u>, Jayant Rathod^{#c}, A.P. Singh^{*b}, Pradeep Kumar^{*c} and Yoel Sasson^{*a} Catal. Sci. Technol., 2018, 8, 3246-3259, Selected for Cover page issue 13. (IF: 6.177)
- [10] Facile continuous process for gas phase halogen exchange over supported alkyl phosphonium salts. <u>Priti Sharma*</u> and Yoel Sasson. *RSC Advances*, 8(2018) 2824-2828. (IF: 4.036)
- [11] Highly active Ru-g-C₃N₄ photocatalyst for visible light assisted selective hydrogen transfer reaction using hydrazine at room temperature. <u>Priti Sharma*</u> and Yoel Sasson. *Catalysis Communications*. 102 (2017)48-52.
- [12] Highly active g-C₃N₄ as a solid base catalyst for knoevenagel condensation reaction under phase transfer conditions. <u>Priti Sharma</u>* and Yoel Sasson. *RSC Advances*. 7 (2017) 25589-25596. (IF: 4.036)
- [13] A Photoactive Catalyst Ru-g-C₃N₄ for Hydrogen Transfer reaction of Aldehydes and Ketones. <u>Priti Sharma</u>^{*} and Yoel Sasson. *Green Chemistry.*19 (2017) 844-852 (selected for cover page). (IF: 11.034).
- [14] Highly Active Recyclable SBA-15-EDTA-Pd Catalyst for Mizoroki-Heck, Stille and Kumada C–C Coupling Reactions. Jayant Rathod^b, <u>Priti Sharma^a</u>, Punam Pandey^b, A.P.Singh^{a*}, Pradeep Kumar^{*b}, *J Porous Mater* 24(2017) 837–846. (IF: 2.287)
- [15] Synthesis and characterization of nanoporous silica SBA-15 diaminocyclohexane and its application in removal of Cu(II) and Ni(II) from aqueous solution. B. Sreenua, <u>Priti Sharma</u>, K. Seshaiaha, A. P. Singh. *Desalination and Water Treatment*, 57 (2016) 15397-15409. (IF:1.234)
- [16] Synthesis of new hybrid sorbent 2- mercaptobenzaldehyde SBA-15 and its application in solid phase extraction of Cd(II) from water and food samples. B. Sreenu, K. Imran, K. Seshaiah, <u>Priti Sharma</u>, A.P. Singh. *Analytical Methods*, 8 (2016) 2947-2954. (IF: 3.532)
- [17] Carbon-Carbon bond forming reactions: Application of Covalently Anchored 2, 4, 6-Triallyloxy-1, 3, 5-triazine (TAT) Pd(II) Complex over Modified Surface of SBA-15 to Heck, Suzuki, Sonogashira and Hiyama cross coupling reactions. Chandani Singh^a, Kiran Jawade^a, <u>Priti Sharma^b</u>, Anand P. Singh^b, Pradeep Kumar^a, *Catalysis Communications*. 69 (2015) 11–15. (IF: 3.532)
- [18] Covalently Anchored 2, 4, 6-triallyloxy-1, 3, 5-triazine (TAT) Pd(II) Complex over Modified Surface of SBA-15: Catalytic Applications in Hydrogenation Reaction. <u>Priti Sharma</u>, A. P. Singh*. *RSC Advance*, 4 (2014) 58467-58475. (IF: 4.036)

- [19] Phosphine free SBA-15-EDTA-Pd highly active recyclable catalyst: Synthesis Characterization and application for Suzuki and Sonogashira reaction. <u>Priti Sharma</u>, A. P. Singh*. *Catalysis Science & Technology*, 4 (2014)2978-2989. (IF: 6.177)
- [20] Synthesis of a recyclable and efficient Pd(II)4-(2-pyridyl)-1, 2, 3-Triazole Complex over the solid Periodic Mesoporous Organosilica support by "Click reactions" for the Stille coupling reaction. <u>Priti Sharma</u>, A. P. Singh*. *RSC Advance*, 4 (2014) 43070-43079. (IF: 4.036)
- [21] Clay encapsulated Cu(OH)x promoted homocoupling of arylboronic acids: An efficient and eco-friendly protocol. Bashir Ahmad Dara, A.P. Singh*, <u>Priti Sharma</u>, Anish Lazar. *Applied Catalysis A: General*, 470 (2014) 232-238. (IF: 9.8)
- [22] Chiral VOIV-Sal-Indanol complex over modified SBA-15: an efficient, reusable enantioselective catalyst for asymmetric sulfoxidation reaction. Anish Lazar, <u>Priti Sharma</u>, A.P. Singh* *Microporous and mesoporous materials*, 170 (2013) 331-339. (IF: 5.723)
- [23] Mn(III) based binaphthyl Schiff base complex heterogenized over organo-modified SBA-15: Synthesis, Characterization and Catalytic Application. <u>Priti Sharma</u>, Anish Lazar and A.P.Singh*.*Applied Catalysis A: General*, 440 (2012)101-110. (IF: 9.8)
- [24] Binapthyl schiff base diamine complex covalently bonded to modified SBA-15: Synthesis, Characterization and Catalytic Application. <u>Priti Sharma</u>, A. P. Singh*. *Catalysis Today*, *198* (2012) 184-188. (IF: 5.70).
- [25] Visible-Light-Enabled Facile hydrogen transfer reaction & Esterification at room temperature. <u>Priti Sharma</u>, Srinivasu Kancharlapalli, Ravishankar G. Kadam, Subodh Kumar, Jan Filip, Zdenek, Giorgi Zoporella, Badura Zdenek, Rajender S. Varma, Manoj B. Gawande,* Radek Zbořil*
- [26] Fe-C₃N₄ single atom use as an additive in waste cooking oil biodiesel (WCOB) fuel. <u>Priti Sharma</u>, Vikas Sharma, Jan Filip, Dr. A. K. Hossain, Manoj B. Gawande,* Radek Zbořil*
- [27] Microwave-Assisted N-Alkylation of Amines with Alcohols over Iron Single-Atom via Borrowing Hydrogen Strategy. Gajanan Y. Shinde, <u>Priti Sharma</u>, Radek Zbořil, and Manoj B. Gawande* Manoj B. Gawande.
- [28] PtNi@nanosheet C₃N₄ bimettalic single atom Catalysed Catalytic hydroelementation of alkynes for precise trans with hydroboranes and hydrosilanes. <u>Priti Sharma</u>, Vitthal B. Saptal, Jan Filip, Manoj B. Gawande,* Radek Zbořil*.
- [29] Establishing the new facile platform as a single atom Pd@CN outperforms Pt@CN verses (Ni,Co etc.) even with high loading co-catalyst for photocatalytic H₂ evolution. <u>Priti Sharma</u>, Raza Waseem, Stepan Kment*, Alberto Naldoni, Radek Zbořil, Patrik Schmuki*.
- [30] Plasmonic TiN facile engineering with C₃N₄ nanotube for efficient water splitting. Slaby Martin, <u>Priti Sharma</u>, Stepan Kment*, Alberto Naldoni, Radek Zbořil, Patrik Schmuki*.
- [31] Facile engineering of TiO₂ with g-C₃N₄ with Pt Single Atoms for extravagent water splitting. Slaby Martin, <u>Priti</u> <u>Sharma</u>, Stepan Kment*, Alberto Naldoni, Radek Zbořil, Patrik Schmuki*.
- [32] Plasmonic TiN facile engineering with Pt single atom C₃N₄ nanotube for facile water splitting. Slaby Martin, <u>Priti</u> Sharma, Stepan Kment*, Alberto Naldoni, Radek Zbořil, Patrik Schmuki*.
- [33] Unique Bimetallic Pt-Ni single atom engineering over CN nanosheet for Precise selectivity in Hydrosilylation Reactions. <u>Priti sharma</u>* Vitthal B. Saptal, Manoj B. Gawande, Radek Zbořil. (Nature Catalysis submission).
- [34] Nickel-POM Decorated Graphene oxide as an Efficient Photocatalyst for Reduction of Nitrobenzene and Olefin at Room Temperature. <u>Priti Sharma*</u> O. Lahad, E. Millar, Yoel Sasson. (Manuscript submitted).
- [35] Highly active Recyclable SBA-15-Tz-RuTPP(II) catalyst via Click reaction: Synthesis, Application for H Transfer Reactions. <u>Priti Sharma^a</u>, Jayant Rathor^b, A.P.Singh^{c*}, P.K.Tripathi^b, Yoel Sasson^{*a}. (Under writing).
- [36] Highly Active BiOCl_xBr_{1-x}/V doped Photocatalyst for selective C-H activation under visible light at Room Temperature. <u>Priti Sharma</u>* Hani Gnayem and Yoel Sasson. (Manuscript under writing).
- [37] g-C₃N₄ Catalyzed Autoxidation of weak Carbon Acids Using PTC at room temperature. <u>Priti Sharma*</u> and Yoel Sasson. (Under writing).
- [38] Density Functional Theory based Computational Study for Iminium Ion formation via g-C₃N₄ Catalyzed in Knoevenagel Condensation Reaction. <u>Priti Sharma*</u> and Yoel Sasson*, Sasson Shaik*. (Under writing).

Book Chapters

Surface-modified nanomaterial - based catalytic material for modern industry application. Priti Sharma, Manoj Gawande*.

Invited Talks

1. Seminar by Dr. Priti Sharma (February 28, 2023, 3:30 PM) hosted by the Department of Chemistry, IIT Delhi.

Poster& Oral Presentations

- [1] Heterogenization of Rh(PPh₃)₃Cl over PMO for hydrogenation of olefins. <u>Anish Lazar</u>, Shoy George C, Priti Sharma, Jithesh P.R, A. P. Singh. 15th National Workshop on the Role of New Material in Catalysis. Indian Institute of Technology (IIT), Chennai, India, December 11-13, 2011. (Poster)
- [2] Mn(III) based (S,S)(–)[N-3-tert-butyl-5-chloromethyl salicylidene]-N-[3,5-di tert-butyl salicylidene] 1,1binapthyl-2,2-diamine complex covalently bonded to modified SBA-15: Synthesis Characterization and Catalytic application. <u>Priti Sharma</u>, A. P. Singh. One day National Seminar on Current Trends in Industrial Catalysis. CSIR-National Chemical Laboratory, Pune, India, June 11 2012. (Poster)
- [3] Mn(III) based binapthyl Schiff base complex heterogenized over organo-modified SBA-15: Synthesis, characterization and catalytic application. <u>Priti Sharma</u> A. P. Singh.2nd International Indo-German Symposium on Green Chemistry & Catalysis for Sustainable Development. ICT, Matunga, Mumbai, India, October 29-31, 2012.(Poster)
- [4] Binapthyl schiff base diamine complex covalently bonded to modified SBA-15: Synthesis, Characterization and Catalytic Application. <u>Priti Sharma</u>, A. P. Singh. *International Conference on Technological Innovations for All Inclusive Growth alongside WAITRO 21st Biennial Congress & General Assembly.* Shree Ram Institute for Industrial *Research (SRI), New Delhi, India, November 8-9, 2012 India. (Poster)*
- [5] Mn(III) based binaphthyl Schiff base complex heterogenized over organo-modified SBA-15: Synthesis, Characterization and Catalytic Application. <u>Priti Sharma</u>, Anish. Lazar, S. Silpa, M. Mirajkar and A. P. Singh. 21st National Symposium on catalysis "catalysis for sustainable Development" (CATSYMP-21) CSIR-IICT, Hyderabad, India, February 11-13, 2013. (Oral).
- [6] Mn(III) based binaphthyl Schiff base complex heterogenized over organo-modified SBA-15: Synthesis, characterization and catalytic application. <u>Priti Sharma</u>, A. P. Singh. Science Day celebration on Green Chemistry & Catalysis. CSIR-NCL Pune, February 27, 2013 (Poster)
- [7] Mn(III) based binaphthyl Schiff base complex heterogenized over organo-modified SBA-15: Synthesis, characterization and catalytic application. <u>Priti Sharma</u>, A.P. Singh. 7th International Symposium on Feedstock Recycling of Polymeric Material. India Habitate Centre, New-Delhi, India. October 23-26, 2013. (Poster)
- [8] Schiff base complex heterogenized over organo-modified SBA-15: Synthesis, characterization and catalytic application. (Hindi Symposium). <u>Priti Sharma</u>, A.P. Singh. Use of Catalyst in Organic Transformation. CSIR-National Chemical Laboratory, Pune, India, May 7th 2013, (Oral presentation in Hindi).
- [9] A Photoactive Catalyst Ru-g-C₃N₄ for Hydrogen Transfer reaction of Aldehydes and Ketones. <u>Priti Sharma</u> Israel, Hebrew University, FACULTEVA DAY 22.03.2017 in Givat Ram (*Poster*).
- [10] A Photoactive Catalyst Ru-g-C₃N₄ for Hydrogen Transfer reaction of Aldehydes and Ketones. <u>Priti Sharma</u> ICS83 Annual Meeting of the Israel Chemical Society Tel Aviv. February 13-14, 2018(*Poster*).
- [11] Photo catalysis and future aspects. 8th Annual **RCPTM Conference**. Mikulov, Czech Republic. <u>Priti Sharma</u> (*Oral presentation*).
- [12] Nano Ostrava 2023 conference, SAN4FUEL project. 16. 5. 2023 Plasmonic materials facile engineering with (CnNn+x) & Single Atoms for efficient water splitting. M. Slabý, <u>Priti. Sharma</u>, A. Naldoni, Š. Kment Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic.
- [13] RCPTM Conference Hotel Horal Velké Karlovice 5.6. 7.6.2023. M. Slabý, <u>Priti. Sharma</u>, A. Naldoni, Š. Kment Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic.

Personal Profile

First name Family name Citizenship Permanent Address

- Priti
- Sharma
- Indian
 - 570/178 Bhartiya Colony New Mandi, Muzaffarnagar, 251001, U.P. INDIA

References REFERENCE 1

Prof. Yoel Sasson Casali Center of Applied Chemistry Institute of Chemistry The Hebrew University of Jerusalem, Jerusalem-91904.;E-mail:<u>ysasson@huji.ac.il</u>. Tel: +972 2658 4530. Fax: +972 2652 9626.

REFERENCE 3

Dr. A. P. Singh Emeritus Chief Scientist, Chairman, Catalysis Division CSIR-NCL, Pune-411008, India E-mail: singhap1153@gmail.com Phone: +91 20 2590 2497

REFERENCE 5

Prof. Rajender Varma Visiting position at Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic E-mail: rajvarma@hotmail.com

REFERENCE 2

Prof. Radek Zbořil, Ph.D. Regional Centre of Advanced Technologies and Materials Olomouc, Czech Republic, 78371 Phone: (+420) 58 563 4762. Email: radek.zboril@upol.cz

REFERENCE 4

Dr. Pradeep Kumar Tripathi Emeritus Chief Scientist, Chair, Organic Chemistry Division CSIR-NCL, Pune-411 008, India E-mail: pk.tripathi@ncl.res.in Phone: 0091-20-25902050/2281

REFERENCE 6

Dr. Naldoni, Alberto Associate Professor of Inorganic Chemistry Università degli Studi di Torino. & visiting position at Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, 783 71 E-mail: <u>albert81n@gmail.com</u>

REFERENCE 8

Prof. Štěpán Kment Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic E-mail: stepan.kment@upol.cz

Olomouc, Czech Republic April 10, 2024 (Dr. Priti Sharma) Dr. Gareth Griffiths Energy and Bioproducts Research Institute Aston University, Birmingham B4, 7ET, United Kingdom, Mechanical Engineering, Aston University, Birmingham UK. E-mail: g.griffiths@aston.ac.uk

Cover Pages

